
1

Final Review

CSE1030 – Introduction to
Computer Science II

Reviewing for the Final

• Lab Tests:
– Sect 01: Tues Nov 27
– Sect 02: Thurs Nov 29

• Final: Thursday December 6, 2:00 pm

Don’t forget to…
• Forget about writing code

– Focus on the "Big Ideas" and theory

• "Think Like A Prof" – How would you test
whether somebody knows something?

• Review the Lecture notes
• Review the Readings

– Textbook
– Course Notes

CSE1030 – Lecture #12
• Introduction
• Java GUI Programming
• Sequential versus Event-Driven
• We’re Done!

2

Textual (Console) Interfaces
• Older Interaction Style
• Provides a means to express commands to a

computer directly via typing and reading text
• May use function keys, single characters,

abbreviations, or whole-word commands
• Primarily used today for older applications

(e.g., ftp, telnet, Unix command-line)
• Can be difficult for Novices
• Often preferred by Expert users

Graphical User Interfaces
• Newer Style of Interaction
• Usually involves a Pointing Device and

Graphical Display
• Richer Output (Graphics, Sound, Video)
• Several Variations

– Point & Click (web pages)
– Question & Answer (MS Windows “Wizards”)
– Forms (Data Entry, Spread Sheets)
– WIMP (Windows, Icons, Menus, Pointers)

• Can be easier for Novices
• May not be preferred by Experts

• GUI Programming is accomplished with the
javax.swing package

• Sun’s Swing toolkit is Java’s most advanced
toolkit, and largest API

• Before Swing…
– AWT (abstract windowing toolkit)
– Most of AWT is now obsolete…
– but AWT still used for a few things (drawing,

images, etc.)

• Swing still uses many features of AWT

GUI Programing with Java
import ...

public class NameOfProgram
extends JFrame
implements ActionListener

{
public static void main(String[] args)
{

}

...

}

Identify packages containing
classes used in the program

1. Construct the GUI frame
2. Give it a title
3. Show it
4. Done!

Java Swing (GUI)
Library is HUGE.
Extend and implement!

All the work is done here

3

JFrame
• Java GUI Programs are instances of JFrame

– JFrame is extended to make our own class

• Interaction is received through listeners
– Listeners are implemented interfaces
– There are listeners for many different kinds of

input (keyboard, mouse, windows opening or
closing, and many more)

• So we must be comfortable with extending
classes and implementing interfaces

Sequential Programming
• In sequential programs, the program is in

control

• The user is required to synchronize with the
program:
– Program tells user it’s ready for more input
– User enters more input and it is processed

• Examples:
– Command-line prompts (DOS, UNIX)
– Command-line programs (ftp, telnet)

Event-driven Programming
• Instead of a user synchronizing with the

program, the program synchronizes with,
or reacts to, the user

• All communication from user to computer
occurs via events and the code that
handles the events

• An event is an action that happens in the
system, such as:
– A mouse button pressed or released
– A key-press on the keyboard
– A window is moved, resized, closed, etc.

Classes of Events
• Typically two different classes of events:

– User-initiated events
• Events that result directly from a user action

(e.g., mouse click, move mouse, key press)

– System-initiated events
• Events created by the system, as it responds to

user action
(e.g., scrolling text, re-drawing a window)

• Both classes of events need to be processed

• User-initiated events may generate system-
generated events

4

Installing Listeners
• It is not enough simply to implement the methods of a

listener

• The listener must also be installed (or “added”)

• Furthermore, it must be installed for the component to
which the listener methods are to be associated

• Thus (from our example program)
enterField.addKeyListener(this);

Component to which
the listener methods are

to be associated

An object of a class
that implements the

listener methods

Installing Listeners (2)
• Signature for the addKeyListener method:

• Description:
– Adds the specified key listener to receive key events

from this component.

• In our example, we used this as the “specified key
listener”
– Indeed, the current instance of our extended JFrame

class (“this”) is a key listener because it implements the
key listener methods

• Result: when a key-press event occurs on the
enterField component, the keyPressed method in
our extended JFrame class will execute!

public void addKeyListener(KeyListener)

Adapter Classes
• What is an adapter class?

– A class provided as a convenience in the
Java API

– An adapter class includes an empty
implementation of the methods in a
listener

– Programmers extend the adapter class
and implement the methods of interest,
while ignoring methods of no interest

CSE1030 – Lecture #13
• Review
• MVC
• Game Programming
• We’re Done!

5

MVC Schematic

Keyboard
Mouse

Etc.
Controller

View

Model

Display

Holds
the

Data

Controller Tasks

• Receive user inputs from mouse and
keyboard

• Map these into commands that are sent
to the model and/or viewport to effect
changes in the view

• E.g., detect that a button has been
pressed and inform the model that the
button stated has changed

Model Tasks
• Store and manage data elements, such

as state information
• Respond to queries about its state
• Respond to instructions to change its

state
• E.g., the model for a button can be

queried to determine if the button is
pressed

View tasks
• Implements a visual display of the model
• E.g., a button has a coloured

background, appears in a raised
perspective, and contains an icon and
text; the text is rendered in a certain font
in a certain colour

6

Benefits of MVC Architecture
• Improved maintainability

– Due to modularity of software components
• Promotes code reuse

– Due to OO approach (e.g., subclassing,
inheritance)

• Model independence
– Designers can enhance and/or optimize model

without changing the view or controller
• Plug-able look and feel

– New L&F without changing model
– Multiple views use the same data

AlienAttack
• Controllable

Missile

• Randomised
UFO spaceship

• Animated
Explosion

• Points (Score)

The Main Loop

Manage the UFO
Spaceship

Manage the Missile

Check for a Collision

Move all the Sprites

Redraw the Screen

1. Wait for random delay
2. Start new screen transit, with

random: side, height, speed
3. Need special handling of the

explosion

If the missile is moving, wait for
it to hit the top of the screen, and
then stop it

Need a way to track all of the
sprites, with their speeds and
directions

Media
• This is the most important part of the game:

–

–

–

7

CSE1030 – Lecture #14
• Review
• Containment Hierarchy
• Component Layout
• We’re Done!

Containment Hierarchy

• A window is made up of a number of
nested interactive objects (e.g.,
buttons, text fields, other windows)

• Relationship of objects is expressed
by a containment hierarchy (a.k.a.
interactor tree)
– based on screen geometry of objects
– represents the hierarchy / nesting of

the objects

Containment Hierarchy - Example
2Display Screen

Outer [black]

Result [tan]
Result String

Inner [green]

Keypad [Teal]

- button
+ button
0 button

= button

7 8 9
4 5 6

0 + -
1 2 3

=

93.54

ENT

Containers
• Components are placed in containers

• A JFrame is a top-level container
– It exists mainly as a place for other components to

paint themselves
– Cannot place a JFrame inside a JFrame

• A JPanel is an intermediate container
– Sole purpose is to simplify the positioning of

interactive objects, such as buttons or text fields
– Other intermediate containers are scroll panes

(JScrollPane) and tabbed panes (JTabbedPane)
– Can place a JPanel inside a JPanel (or inside a

JFrame, via the content pane)

8

Containment Hierarchy for
JFC/Swing

JFrameJFrame

content panecontent pane

ContainerContainer

JPanelJPanelJPanelJPanel

JButtonJButton JLabelJLabel etc.

etc.

JPanelJPanel

JButtonJButton JTextFieldJTextField

Absolute Positioning

• Component position and size explicitly
specified…
– X and Y screen coordinates
– Width and height of component
– Units: pixels (typically)

Example Program
DemoAbsolute.java

BorderLayout
• Places components in one of five regions

– North, South, East, West, Center

• Support for struts and springs
– Struts ()

• Can specify ‘hgap’, ‘vgap’
– Springs ()

• Inter-component space is fixed
– Components expand to fill space in region

9

Border Layout (2)

• Components ‘expand’ (or ‘stretch’) to fill
space as follows

North

South

West EastCenter

Expand direction

FlowLayout
• Arranges components in a group, left-to-right

Wraps components to new line if necessary

• Support for struts and springs
– Struts ()

• Can specify ‘hgap’, ‘vgap’
– Springs ()

• Inter-component space is fixed
– Component size is fixed

• Space is added before / after / below the entire
group of components to fill available space

Example Program (2)

Launch

Resize

Default for FlowLayout…
struts : hgap = vgap = 5,
alignment = center

Invocation: java DemoFlowLayout 5 c

Fill available space before/after/below group of
components

GridLayout
• Arranges components in a rectangular grid

The grid contains equal-size rectangles

• Support for struts and springs
– Struts ()

• Can specify ‘hgap’, ‘vgap’
– Springs ()

• Inter-component space is fixed
– Components expand to fill rectangle

10

Example Program (2)

Launch Resize

Invocation: java DemoGridLayout 0

No struts

Equal-size rectangles

BoxLayout
• Arranges components vertically or horizontally

Components do not wrap

• Support for struts and springs
– Struts ()

• Can specify ‘rigid areas’
– Springs ()

• Can specify ‘horizontal glue’ or ‘vertical glue’
– Components expand if maximum size property is

set

Example Program (3)
Invocation: java DemoBoxLayout c e

Launch Resize Resize more

Struts (10 pixels)

Springs

Enable struts and springs demo CSE1030 – Lecture #15
• Introduction to Arrays
• Constant Arrays Examples
• Dynamic Arrays
• We’re Done!

11

New Idea: An Array is…
• A Name, and a Table of Arrows (Pointers), to Blocks of

Memory:
Person[] p = new Person[] {

new Person("Sally", 26),
new Person("Frank", 28),
new Person("Joe", 21),

};

Person {“Sally”, 26}

Arrow to a
Table of
Arrows

(Pointers)
Pieces of MemoryTable of

Arrows

Person {“Frank”, 28}

Person {“Joe”, 21}

[0]

[1]

[2]

p
Name

import java.util.*;

class example2b
{

public static void main(String[] args)
{

Scanner in = new Scanner(System.in);

System.out.println("Enter a 'Day of the Week' "
+"(1 <= integer <= 7):");

int day_of_week = 0;
try {

day_of_week = in.nextInt();
}
catch(Exception e)
{

day_of_week = 0;
}

Days of the Week – Better
Solution

final String[] days = {
"Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday",

};

if(day_of_week < 1 || day_of_week > 7)
System.out.println("Bad Input - try again");

else
System.out.println(days[day_of_week - 1]);

}
}

Array Summary (1/2)
• Declare Arrays:

• Constructing
Empty Arrays:

• Initialising with
Hardcoded
Values:

String[] words;

someNumbers = new int[10];

String[] words = new String[3];

int[] someNumbers;

String[] words = {
"Hello", "Good Bye"

};

int[] somenumbers = {
2, 3, 5, 7, 11,

};

12

Array Summary (2/2)
• Using Arrays:

(Note: the Index must be an int)

• Array Size:

String s = words[2];

someNumbers.length

words.length

int n = someNumbers[i];

somenumbers[3] = 17;

Resize – Larger

1. Need to create a new Larger array

2. Copy the objects over to the new array

3. Switch over to the new array

1 – Create a New Larger Array

[0]

[1]

[2]

[3]

[4]

p_new

Person[] p_new = new Person[p.length + 5];

[5]

[6]

[7]

[8]

[9]

null

null

null

null

null

null

null

null

null

null

2 – Copy the objects over to the new
array

[0]

[1]

[2]

[3]

[4]

p_new

for(int i = 0; i < p.length; i++)
p_new[i] = p[i];

[5]

[6]

[7]

[8]

[9]

null

null

null

null

null

[0]

[1]

[2]

[3]

[4]

p Person {“Sally”, 26}

Person {“Frank”, 28}

Person {“Joe”, 21}

Person {“Becky”, 26}

Person {“Alan”, 28}

13

3 – Switch over to the new array

[0]

[1]

[2]

[3]

[4]

p

p = p_new;

[5]

[6]

[7]

[8]

[9]

null

null

null

null

null

Person {“Sally”, 26}

Person {“Frank”, 28}

Person {“Joe”, 21}

Person {“Becky”, 26}

Person {“Alan”, 28}

p_new

Array Resize – Larger – Code
Review

Person[] p_new = new Person[p.length + 5];

for(int i = 0; i < p.length; i++)
p_new[i] = p[i];

p = p_new;

1. Need to create a new Larger array

(how much bigger?)

2. Copy the objects over to the new array

3. Switch over to the new array

Delete "Joe"

[0]

[1]

[2]

[3]

[4]

p

[5]

[6]

[7]

[8]

[9]

null

null

null

null

Person {“Sally”, 26}

Person {“Frank”, 28}

Person {“Joe”, 21}

Person {“Becky”, 26}

Person {“Alan”, 28}

p[2] = null;
counter -= 1;

Person {“Jack”, 21}

• Removing an object
from the table is
easy

• Are we storing "null"
objects?

• Should we "shift"
objects up to get rid
of nulls in the table?

null

Shifting objects up to remove
nulls

[0]

[1]

[2]

[3]

[4]

p

[5]

[6]

[7]

[8]

[9]

null

null

null

null

Person {“Sally”, 26}

Person {“Frank”, 28}

Person {“Joe”, 21}

Person {“Becky”, 26}

Person {“Alan”, 28}

for(int i = 2; i < count; i++)
p[i] = p[i+1];

p[count] = null;

Person {“Jack”, 21}

null

null

14

Dynamic Arrays – Summary

• Three important Operations:
– Adding
– Deleting

– Iterating

• Iterating is easy – just access what you
want for(int i = 0; i < count; i++)

System.out.println(p[i]);

These are tricky, because we may
have to resize the array, or shift
objects around – Inefficient!

Fast, Fast, Fast! It's hard to beat p[i]

Arrays – The Big Questions
• Do we even allow the expensive operations

(adding or removing to/from the middle of the list)

• Do we leave "null" values, or shift to remove
them?

• Space / Time Trade-off:
– How big an array do we start with?

– By how many slots do we enlarge the array?

– Do we ever shrink an array? By how much?

Efficient Operations
• Adding or Deleting to/from the End of the Array

is fast (no Shifting), so those are safe
operations to support, and to use

• Adding or Deleting to/from the Middle of the
Array may require Shifting, which is inefficient
– So maybe these operations should not be allowed?
– Or only infrequently used?
– Or they should be grouped together so all the shifting

can be done at once?
– Or we can leave "nulls", but that complicates things

Shifting Objects Up/Down
• There is a Trade-off:

– Shifting to Remove null values:
• Slower, but more memory efficient
• Makes it easy to insert (count = available slot)
• May not be so bad, if there are only a few deletes

– Leaving nulls:
• Means the user can't store nulls in the array
• Faster Deletion
• not necessarily faster Addition

(searching for nulls is time consuming, changes order)
• Can waste a Huge amount of memory

• In the end, it depends upon the properties of your data,
and the requirements of your application. Experiment!!

15

CSE1030 – Lecture #16
• Review: Arrays
• Regular 2D Arrays
• Irregular 2D Arrays
• We’re Done!

The Big Idea so far…
• When data "looks like" this:

(and you can't use, or don't need the complexity of, a Collection)

• Use an array:

Object[] array = new Object[5];

array = array[0]

array[1]

array[2]

array[3]

array[4]

New Idea… What about
Tables?

• What do we do when the data "looks like" this?

• Use a 2-Dimensional array:
Object[3][4] array = new Object[3][4];

array = array[0][0]

array[1][0]

array[2][0]

array[0][1]

array[1][1]

array[2][1]

array[0][2]

array[1][2]

array[2][2]

array[0][3]

array[1][3]

array[2][3]

2D Array Notation (1/4)
• Declare Arrays:

• Constructing
Empty Arrays:

String[][] words;

someNumbers = new int[10][5];

String[] words = new String[3][2];

int[][] someNumbers;

16

2D Array Notation (2/4)
• Initialising with

Hardcoded
Values:

String[][] words = {
{ "Hello", "Good Bye" },
{ "Bonjour", "Au revoir" }

};

int[][] someNumbers = {
{ 2, 3, 5, 7, 11, },
{ 13, 17, 19, 23, 31, },

};

Array Notation (3/4)
• Using Arrays:

• Array Size
rows: # columns:

String greeting = words[1][0];

someNumbers.length

words.length

int n = someNumbers[i][j];

somenumbers[0][4] = 11;

someNumbers[0].length

words[0].length

2D Array Notation (4/4)
• Accessing a

single Row:

• Output:

int[][] someNumbers = {
{ 2, 3, 5, 7, 11, },
{ 13, 17, 19, 23, 31, },

};

int[] oneRow = someNumbers[1];

for(int i = 0; i < oneRow.length; i++)
System.out.print(" " + oneRow[i]);

13 17 19 23 31

Irregular 2D Arrays

• Have a number of Rows

• But the number of columns differ in some
of the rows

array =int[][] array = {
{ 10, },
{ 20, 21, 22, },
{ 30, 31, 32, 33, 34, },

};

10

20 21 22

32 33 343130

17

How are Irregular 2D Arrays
Possible?

int[][] array 10

20

21

22

32

33

34

31

30

• A 2D Array is really an "Array of Arrays":

Advanced Usage of Arrays…

• You can have higher-dimensional arrays:

• You can have arrays of Objects:

int[][][] array = {
...

};

Object[] array = {
new Moons(),
new ChessBoard(),
new Integer(10),
new String[] { "Hi", "Bye" },

};

CSE1030 – Lecture #17
• Review
• Introduction to Linked Lists
• We’re Done!

How about we use lots of Little Blocks of
Memory, instead of 1 Big one?

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

• Each Little Block
holds an arrow
(reference, pointer)
to the data

• Each Little Block
also has to provide
a way to find the
next little block

18

Linked List Terminology

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Data

Head of the List

Tail of the List

A Node

'null' marks the end
of the Linked List

Head Pointer Implications
• We are still storing a collection of arrows

(or "references", or "pointers") as we did
when we used arrays

• But because the arrows are in their own
individual little pieces of memory, nothing
has to be shifted to insert new ones

• There are other benefits too…

Now, Inserting Henry is Easy!
p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

Person {“Henry”, 26}

• This only requires
changing 2
arrows…

• … and adding 1
new little block of
memory.

Deletion is also Easy

p

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

• Deleting "Frank"
only requires us
to update 1
pointer – Fast!

19

Arrays versus Linked Lists
• Good:

– Insertion / Deletion is easy
(just update some arrows)

– Insertion or Deletion at the
Top of the list is Fastest

– There is no "Resizing Cost"

• Bad:
– Accessing an element

requires us to iterate along
the List – Slower than array

– Wastes more Memory
(2 arrows per Data item)

– Although it, doesn't have
empty slots

• Good:
– Access to any element is very

fast: p[i]
– Adding / Deleting from the End

is Fastest
(but can cause Resizing)

– Efficient on Memory
(only 1 arrow per Data item)

– But empty slots waste memory

• Bad:
– Insertion / Deletion anywhere

but the end of the array
– Resizing

CSE1030 – Lecture #18
• Review
• Iterating
• Inserting
• Deleting
• Extensions to Singly Linked-Lists
• Doubly-Linked-Lists
• We're Done!

Linked List Iteration

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

pointer

• Iterating through a
list means we have
to construct a
"pointer", and move
the pointer along
the list, one item at
a time.

• We accomplish this
by using the "next"
pointers

// now we want to output the list:
Node pointer = head;

int i;
while(pointer != null)
{

System.out.println(" " + i++ + " " + pointer.data);

pointer = pointer.next;
}

System.out.println("Done!");

Start at the head
("top") of the list

Use the Data

Move the pointer
on down the list

20

Inserting Nodes into a Linked-
List

• Insertion requires us to create a
new Node, and update a pointer

• There are three cases:
1. Inserting at the head of the list
2. Inserting at the end of the list
3. Inserting in the middle

Inserting at the Beginning

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

• Next we update the
head pointer and
we're done

• Let's look at the
code…

Inserting at the End

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

• To insert at the end
of the list we have
to change the 'next'
pointer of the last
node…

• and we have to add
a new node with a
'next' pointer that is
null.

• Let's look at the
code

Inserting in the Middle

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

• To insert in the
middle of the list we
have to find the
node above where
the new node
should go…

• because that's the
node where the
'next' pointer has to
be changed.

21

Deleting Nodes from a Linked-
List

• Deletion only requires us to update a
pointer

• There are three cases:
1. Deleting from the head of the list
2. Deleting from the end of the list
3. Deleting from the middle

Deleting from the Beginning

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

• Here we move the
head pointer one
node down the
list…

Deleting from the End

head

null

"apple"

"banana"

"cherries"

"fig"

"grapes"

null

• To delete from the
end of the list we
have to change the
'next' pointer of the
second-last node
to null…

Deleting from the Middle

head

null

"apple"

"banana"

"fig"

"grapes"

"cherries"

• Once we have
updated the
preceding 'next'
pointer, the skipped
node has been
removed from the
list

22

Linked List with Tail Pointer

head

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

'Tail Pointer'

tail

Circular Linked Lists

head Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Person {“Joe”, 28}

The 'next'
pointer of the

last node
loops back to

the top

Doubly Linked-List

head

null

Person {“Alan”, 26}

Person {“Becky”, 28}

Person {“Frank”, 21}

Person {“Jack”, 26}

Each Node has a
pointer that points

forward ('next')
and another one that

points backward
('previous')

tail

null CSE1030 – Lecture #19
• Introduction to Recursion
• Execution Stack
• Example: Reversing a String
• Example: Mathematical Bisection
• We're Done!

23

Let's Re-examine the Code
static int factorial(int x)
{

if(x == 0)
return 1;

else
return x * factorial(x-1);

}

static public void main(String[] args)
{

int fact = factorial(10);
System.out.println("fact = " + fact);

}

The "Termination
Condition" or
"Base Case"

Formulation of the
"big" problem in

terms of a "smaller"
version, the

"Recursive Case"

Iterative versus Recursive
Solutions

int factorial(int x)
{

if(x == 0)
return 1;

else
return x * factorial(x-1);

}

Recursive Solution

Iterative Solution

int factorial(int x)
{

int answer = 1;

for(int i = 1; i <= x; i++)
answer *= i;

return answer;
}

How do the Result values get
Returned?

• Same functionality, more print statements…

static int factorial(int x)
{

System.out.println("factorial(" + x + ") called!");

if(x == 0)
{

System.out.println("factorial(0) returned: 1");
return 1;

}
else
{

int retval = x * factorial(x-1);
System.out.println("factorial(" + x + ")"

+ " returned: " + retval);
return retval;

}
}

Output of
Improved
Version

>java factorialRecursiveVerbose
factorial(10) called!
factorial(9) called!
factorial(8) called!
factorial(7) called!
factorial(6) called!
factorial(5) called!
factorial(4) called!
factorial(3) called!
factorial(2) called!
factorial(1) called!
factorial(0) called!
factorial(0) returned: 1
factorial(1) returned: 1
factorial(2) returned: 2
factorial(3) returned: 6
factorial(4) returned: 24
factorial(5) returned: 120
factorial(6) returned: 720
factorial(7) returned: 5040
factorial(8) returned: 40320
factorial(9) returned: 362880
factorial(10) returned: 3628800
fact = 3628800

• Same functionality,
more print
statements…

• Shows both:
– The Calls recursing

down to the terminating
case

– And the Returns
recursing back out to the
answer

24

Execution Stack • Every time that Java starts
a new function, it creates a
"stack frame", a unique
place to hold the local
variables for that function

• When a function returns,
the stack frame goes away

• This is called the
"execution stack"

• Consequently, in this
example each function has
their own distinct variable
called "parameter"

A()

B()

C()

D() parameter = 3

parameter = 2

parameter = 1

parameter = 0

main()

answer = 4

args = String[0];

Recursive Execution Stack Example
• Every time we recurse, Java

creates a new stack frame, within
which the variables exist.

• This is how recursion works.

fact()

fact()

fact()

fact() x = 1

x = 2

x = 3

x = 4

main()

fact = 24

args = String[0];

int fact(int x)
{

if(x == 0)
return 1;

else
return x * fact(x-1);

}

public void main(String[] args)
{

int f = fact(4);
System.out.println("fact = " + f);

}

fact() x = 0

Mathematical Bisection
• Bisection is a technique used to find the point where a

function crosses zero (to find x where f(x) = 0)
• We sandwich the zero between two points (start & end)

(0,0)

y = sin(x)

start

end

static double bisect(double start, double end)
{

double mid = (start + end) / 2.0;

if(Math.abs(start - end) < errorTolerance)
return mid;

if(f(mid) > 0)
return bisect(mid, end);

else
return bisect(start, mid);

}

Recursive
Solution

25

CSE1030 – Lecture #20
• Review: Recursion
• Iteration versus Recursion
• Examples: Linked-List Functions
• Example: Fractals
• Example: AI Robot Path Planning
• We're Done!

Theory: Definition of Recursion
• A function is Recursive if it calls itself (directly or

indirectly) from within its own body

• Two components of a Recursive Solution:
1. A solution to the problem that involves a simpler

instance of the problem (called the
"Recursive Case")

2. A Direct Solution to a simple version of the
problem (called the "Termination Case", or
"Base Case")

• Any algorithm can be implemented with either a
recursive or iterative algorithm, although some
problems are easier to solve one way or the other

Practical: Coding Recursion
• A function is Recursive if it calls itself (directly or

indirectly) from within its own body

• Recursive Functions always have:
1. An "if" statement

• The "if" tests whether the function input is a
"Base Case"

• If the input is a Base Case, then a value is returned
directly (without calling the function again)

2. Otherwise, the input requires the "Recursive
Case"
• The function calls itself with an argument that is

closer to the Base Case than the original argument

How? Recursive Execution Stack
• Every time we recurse, Java

creates a new stack frame, within
which the variables exist.

• This is how recursion works.

fact()

fact()

fact()

fact() x = 1

x = 2

x = 3

x = 4

main()

fact = 24

args = String[0];

int fact(int x)
{

if(x == 0)
return 1;

else
return x * fact(x-1);

}

public void main(String[] args)
{

int f = fact(4);
System.out.println("fact = " + f);

}

fact() x = 0

26

Comments about
Speed and Memory Usage

• Sometimes Speed is very important (real-time
applications, games, etc.)

• Sometimes Efficient Memory Usage is very important
(embedded programming)

• Most of the time, though, there is lots of time and
memory, and so the algorithm can be written either
with recursion or with iteration, whichever is easier

• Some people don't like recursive code because of the
possibility of stack overflows
– But running out of memory is running out of memory,

regardless of whether the algorithm is recursive or iterative
– A well-written implementation should be relatively reliable

Find the length of a linked-list
int length(Node p)
{

if(p == null)
return 0;

else
return 1 + length(p.next);

}

Recursive Solution

Iterative Solution

int length(Node p)
{

int i = 0;
while(p != null)
{

p = p.next;
i++;

}
return i;

}

Print a linked-list
void printList(Node p)
{

if (p != null)
{

System.out.println(p.data);
printList(p.next);

}
}

Recursive Solution

Iterative Solution

void printList(Node p)
{

while(p != null)
{

System.out.println(p.data);
p = p.next;

}
}

Printing Forward or Backward?
void printList(Node p)
{

if (p != null)
{

System.out.println(p.data);
printList(p.next);

}
}

Forward

Backward

void printReverseList(Node p)
{

if (p != null)
{

printReverseList(p.next);
System.out.println(p.data);

}
}

The order that we
print and recurse

matters!

27

Copying a linked-list

Node copy(Node p)
{

if(p == null)
return null;

else
return new Node(p.data, copy(p.next));

}

Recursive Solution:

• Copying a linked-list is much easier using
recursion…

Reversing a linked-list

Node reverse(Node p)
{

return reverse(p, null);
}

Node reverse(Node p, Node ancestor)
{

if(p == null) // empty?
return ancestor;

Node theNextNode = p.next; // remember who's next

p.next = ancestor; // point this node backwards

return reverse(theNextNode, p); // recurse to next node
}

Recursive Solution:

Inserting into an Ordered linked-
list

Node insertInOrder(String key, Node p)
{

if(p == null || p.data.compareTo(key) >= 0)
return new Node(key, p);

else
{

p.next = insertInOrder(key, p.next);
return p;

}
}

Recursive Solution:

Usage:
head = insertInOrder("newdata", head);

Deleting from an Ordered
linked-list

Node deleteInOrder(String key, Node p)
{

if(p == null)
return p;

else if (p.data.equals(key))
return p.next;

else
{

p.next = deleteInOrder(key, p.next);
return p;

}
}

Recursive Solution:

Usage:
head = deleteInOrder("deldata", head);

28

Deleting the last Node of a linked-
list

Node deleteLast(Node p)
{

if(p == null || p.next == null)
return null;

else
{

p.next = deleteLast(p.next);
return p;

}
}

Recursive Solution:

Usage:
head = deleteLast(head);

"Two-List" Operations
• All of the Linked-List operations we have seen

so far have used only 1 linked-list

• Next, let's look at three operations that combine
two linked-lists into one list:
– Append
– Shuffle
– Merge

• For these examples will use the following data:

p = apple banana cherries fig grapes null

q = aardvark bat cat dragon elephant null

Append

Node append(Node p, Node q)
{

if(p == null)
return q;

else
{

p.next = append(p.next, q);
return p;

}
}

Recursive Solution:

apple
banana
cherries

fig
grapes
aardvark

bat
cat

dragon
elephant

Result:

Shuffle

Node shuffle(Node p, Node q)
{

if(p == null)
return q;

else if(q == null)
return p;

else
{

// Note we exchange p and q here
p.next = shuffle(q, p.next);
return p;

}
}

Recursive Solution:

apple
aardvark
banana
bat

cherries
cat
fig

dragon
grapes
elephant

Result:

29

(Alphabetical) Merge
Node merge(Node p, Node q)
{

if(p == null)
return q;

else if(q == null)
return p;

else if(p.data.compareTo(q.data) < 0)
{

p.next = merge(p.next, q);
return p;

}
else
{

q.next = merge(p, q.next);
return q;

}
}

Recursive Solution:

aardvark
apple
banana
bat
cat

cherries
dragon
elephant

fig
grapes

Result:
(alphabetical)

Recursion and Fractals
• Self Similar problems are very well suited to

Recursion, because they naturally look like a
smaller version of themselves as you "zoom in"
to them

• Fractals are defined as structures that are self
similar

• This means that recursion is very useful for
generating fractals…

Remember last lecture when we
said…

• We don't have to decompose a "big" problem
down only into little problems that we can solve

• Some problems can be decomposed into a
smaller version of the same problem

• In this case, we don't have to solve the "big"
problem or even the "smaller" problem, instead
we can get away with solving a very very small
version of the problem…

Recursion and Artificial
Intelligence

• Because Recursion does not require an explicit
solution of a problem, we can use recursion to
solve problems for which it is difficult to think of
a solution…

• For this reason there is a correlation between
recursion and Artificial Intelligence
– Many of the AI programming languages are strongly

recursive (e.g., Lisp, Prolog)

30

CSE1030 – Lecture #21
• Searching: Linear Search (Unordered List)
• Complexity and the "Big-O"
• Searching: Binary Search (Ordered List)
• Bubble Sort
• Selection Sort
• Insertion Sort
• Quicksort
• Mergesort
• We're Done!

Searching

• Searching is a common problem we often face
when writing programs

• The question is, how best to find an item stored
in a collection?

• Although the particular data (or Object) we
might be looking for could be just about
anything, the searching problem itself usually
looks about the same

Analysis of Linear Search

• How long does it take to find our number?

• We could get lucky if the key is near the front

• Otherwise we may have to search all the way to
the end of the array
– This is called the "Worst Case",

here the worst case = n comparisons

• On average we would expect to have to search
about half of the array
– This is called the "Average Case",

here the average case = ½ n comparisons

10 8 75 60 20 4 86 91 81 32 37 84 5 …
"Big-O" Notation

• The idea of "Big-O" notation is to provide an
idea of the relative time-efficiency of an
algorithm
– We are also worried about memory ("space-

efficiency"), but not as much as time-efficiency

• As we just saw, we remove factors that depend
only upon the particular implementation
(processor, language)

• Terminology:
– An algorithm like the linear search we just saw,

which is O(n), we would say is "Order n"

31

Common Time
Complexities

• O(1) constant time
• O(log n) log time
• O(n) linear time
• O(n×log n) log linear time
• O(n2) quadratic time
• O(n3) cubic time
• O(2n) exponential time

BETTER

WORSE
Why are these
functions in this

order?

Conclusion?
• Although the problem sounds (and is) simple,

because the "complexity of our algorithm" is O(2n)
we could never hope to see our program run to
completion in our lifetime

• In theoretical terms our goal is to find algorithms
and data structures that have a low complexity

• And in terms of applied computer science (i.e.,
working for "the man") our goal is to know enough
about complexity to know which data structure from
the API to use (array versus linked-list) and which
sorting algorithm from the API to call to sort our
data…

Binary Search
• What if the array of integers was sorted? We

could "bisect" the array. Let's find 10….

2 4 5 8 10 14 17 20 22 23 27 29 30
0 126

TopBottom Middle

array[Middle] is too large!
So we move "Top" down

Binary Search Analysis
• The binary search algorithm splits the

search space in half every iteration

• This means in the worst case it will
take log(n) steps to find the item

• So Binary Search is order: O(log n)

32

Sorting
• Having sorted data makes searching

much faster

• So what options do we have for sorting?

• Let's start with the "Bubble Sort"

Bubble Sort
• Compare each element (except the last one) with its

neighbor to the right
– If they are out of order, swap them

• Then: Compare each element (except the last two)
with its neighbor to the right
– If they are out of order, swap them

• Then: Compare each element (except the last three)
with its neighbor to the right

• Continue as above until you have no unsorted
elements on the left

Analysis of Bubble Sort
• The outer loop is executed n-1 times

(call it n, that’s close enough)

• Each time the outer loop is executed, the inner
loop is executed

• The inner loop executes n-1 times at first, linearly
dropping to just once

• On average, inner loop executes about n/2 times
for each execution of the outer loop

• In the inner loop, the comparison is always done
(constant time), the swap might be done (also
constant time)

• result is n × n/2 × k, that is, O(½ n2 × k) ≈ O(n2)

Selection Sort
• Search elements 0 through n-1 and select the smallest

– Swap it with the element in location 0

• Search elements 1 through n-1 and select the smallest
– Swap it with the element in location 1

• Search elements 2 through n-1 and select the smallest
– Swap it with the element in location 2

• Search elements 3 through n-1 and select the smallest
– Swap it with the element in location 3

• Continue in this fashion until there’s nothing left to
search

33

Selection Sort
• The outer loop executes n-1 times
• The inner loop executes about n/2

times on average (from n to 2
times)

• Work done in the inner loop is
constant (swap two array elements)

• Time required is roughly (n-1)×(n/2)
• This is O(n2)

7 2 8 5 4

2 7 8 5 4

2 4 8 5 7

2 4 5 8 7

2 4 5 7 8

Insertion Sort
• We have a counter that loops through the

array, from bottom to top

• Each new element that the counter points to is
inserted in order to the left of the counter
– This means we have to shuffle elements up the

array to make room for each newly sorted element

• Repeat for all elements

One Step of Insertion Sort

3 4 7 12 14 14 20 21 33 38 10 55 9 23 28 16

sorted next to be inserted

3 4 7 55 9 23 28 16

10

temp

3833212014141210

sorted

less than 10

Analysis of Insertion Sort
• Runs once through the outer loop, inserting each of

n elements

• On average, there are n/2 elements already sorted

• The inner loop looks at (and moves) half of these
(this gives a second factor of n/4)

• So the time required for insertion sort to complete
sorting the array of n elements is proportional to ¼ n2

• Discarding constants, insertion sort is O(n2)

34

QuickSort
• Quicksort is one of the fastest sorting algorithms

known

• It is naturally a recursive algorithm

• The idea is:
– Pick any element, and call it "the pivot"
– Re-order the list (in 1 pass) so that all values less

than the pivot come before it in the array, and all
larger values come after it

– Recursively sort the two sub-lists (of elements that
are smaller than the pivot, and elements that are
larger)

Analysis of Quicksort
• The analysis of Quicksort depends upon how lucky

the algorithm gets with the pivot values

• If the pivots cause the array to be divided roughly
equally every time, then Quicksort is O(nlog n)

• If the pivot values are not lucky, then the Quicksort
is order O(n2)

• Although in practice things can be done to ensure
that the pivots are chosen well

• And for large sets of data, Quicksort is one of the
fastest sorting algorithms we have

Merge Sort
1. Break the set to be sorted in half
2. Use recursion to sort each half
3. Merge the two sorted lists back together

• (For source code see Assignment #8)

• Merge sort works best with:
– Data where sets can easily be re-ordered

(like linked-lists)
– Analysis:

• Average Case: O(n×log n)
• Worst Case: O(n×log n)

Sorting Summary

O(n×log n)O(n×log n)Mergesort
O(n2)O(n×log n)Quicksort
O(n2)O(n2)Insertion
O(n2)O(n2)Selection
O(n2)O(n2)Bubble

Worst CaseAverage

• Quicksort (or variations) are commonly used
everywhere, because the worst case is avoidable

• Although it has a poor complexity, insertion sort is fast
for very small data sets (small n)

• Mergesort is fastest for serially-accessible data

35

Sorting Summary
• We have covered only the most popular

sorting algorithms here

• There are many many more

• But in practice you need to know only four
algorithms: Insertion sort, Quicksort,
Mergesort, and the HeapSort
– Heapsort uses a "Tree" data structure, which you

won't cover until next year, and so we can't really
discuss it in detail yet (although it's pretty cool,
and it's about as fast as Quicksort, although its
average case and worst case are both
O(n×log n)).

Next…

The Final Exam

